979 research outputs found

    Effects of mixing on evolution of hydrocarbon ratios in the troposphere

    Get PDF
    Nonmethane hydrocarbon (NMHC) concentration ratios provide useful indicators of tropospheric oxidation and transport processes. However, the influences of both photochemical and mixing processes are inextricably linked in the evolution of these ratios. We present a model for investigating these influences by combining the transport treatment of the Lagrangian particle dispersion model FLEXPART with an ultrasimple (i.e., constant OH concentration) chemical treatment. Required model input includes NMHC emission ratios, but not ad hoc assumed background NMHC concentrations. The model results give NMHC relationships that can be directly compared, in a statistical manner, with measurements. The measured concentration ratios of the longest-lived alkanes show strong deviations from purely kinetic behavior, which the model nicely reproduces. In contrast, some measured aromatic ratio relationships show even stronger deviations that are not well reproduced by the model for reasons that are not understood. The model-measurement comparisons indicate that the interaction of mixing and photochemical processing prevent a simple interpretation of "photochemical age," but that the average age of any particular NMHC can be well defined and can be approximated by a properly chosen and interpreted NMHC ratio. In summary, the relationships of NMHC concentration ratios not only yield useful measures of photochemical processing in the troposphere, but also provide useful test of the treatment of mixing and chemical processing in chemical transport models. Copyright 2007 by the American Geophysical Union

    The North Atlantic Oscillation controls air pollution transport to the Arctic

    Get PDF
    This paper studies the interannual variability of pollution pathways from northern hemisphere (NH) continents into the Arctic. Using a 15-year model simulation of the dispersion of passive tracers representative of anthropogenic emissions from NH continents, we show that the North Atlantic Oscillation (NAO) exerts a strong control on the pollution transport into the Arctic, particularly in winter and spring. For tracer lifetimes of 5 (30) days, surface concentrations in the Arctic winter are enhanced by about 70% (30%) during high phases of the NAO (in the following referred to as NAO<sup>+</sup>) compared to its low phases (NAO<sup>-</sup>). This is mainly due to great differences in the pathways of European pollution during NAO<sup>+</sup> and NAO<sup>-</sup> phases, respectively, but reinforced by North American pollution, which is also enhanced in the Arctic during NAO<sup>+ </sup>phases. In contrast, Asian pollution in the Arctic does not significantly depend on the NAO phase. The model results are confirmed using remotely-sensed NO<sub>2</sub> vertical atmospheric columns obtained from seven years of satellite measurements, which show enhanced northward NO<sub>2</sub> transport and reduced NO<sub>2</sub> outflow into the North Atlantic from Central Europe during NAO<sup>+</sup> phases. Surface measurements of carbon monoxide (CO) and black carbon at high-latitude stations further corroborate the overall picture of enhanced Arctic pollution levels during NAO<sup>+</sup> phase

    Establishing Lagrangian connections between observations within air masses crossing the Atlantic during the International Consortium for Atmospheric Research on Transport and Transformation experiment

    Get PDF
    The ITCT-Lagrangian-2K4 (Intercontinental Transport and Chemical Transformation) experiment was conceived with an aim to quantify the effects of photochemistry and mixing on the transformation of air masses in the free troposphere away from emissions. To this end, attempts were made to intercept and sample air masses several times during their journey across the North Atlantic using four aircraft based in New Hampshire (USA), Faial (Azores) and Creil (France). This article begins by describing forecasts from two Lagrangian models that were used to direct the aircraft into target air masses. A novel technique then identifies Lagrangian matches between flight segments. Two independent searches are conducted: for Lagrangian model matches and for pairs of whole air samples with matching hydrocarbon fingerprints. The information is filtered further by searching for matching hydrocarbon samples that are linked by matching trajectories. The quality of these "coincident matches'' is assessed using temperature, humidity and tracer observations. The technique pulls out five clear Lagrangian cases covering a variety of situations and these are examined in detail. The matching trajectories and hydrocarbon fingerprints are shown, and the downwind minus upwind differences in tracers are discussed

    Export of Asian pollution during two cold front episodes of the TRACE-P experiment

    Get PDF
    Two cold front episodes were sampled during the two flights out of Yokota, Japan, during the Transport and Chemical Evolution Over the Pacific (TRACE-P) experiment during March 2001. The data from these two flights are examined using a mesoscale three-dimensional model. We show how these cyclonic systems have impacted the export of pollution out of the Asian continent. We contrast the relative role of convection and ascent in the warm conveyor belts associated with the cyclone during these two episodes. Although the necessary meteorological conditions for an efficient export of pollution are met during flight 13 (i.e., the occurrences of the warm conveyor belt near the source regions), no significant pollution is simulated in the mid-Pacific in the lower and middle troposphere. The efficient ventilation of the WCB by convection near the coast, the advection by the anticyclonical flow above 700 hPa, and the downward motion associated with the Pacific high in the remote ocean significantly prevent any long-range transport of undiluted pollution in the WCB. During flight 15 the conveyor belts have already moved to the remote ocean. The polluted plume is split by the rising air in the warm conveyor belt which transports CO-poor air northward and by the oceanic convection which transports clean air masses upward. These mechanisms lead to the dilution of Asian pollution in WCB en route to North America and add to the episodic nature of the Asian outflow by fragmenting the pollution plume

    Climatological aspects of the extreme European rainfall of August 2002 and a trajectory method for estimating the associated evaporative source regions

    Get PDF
    International audienceDuring the first half of August 2002, a sequence of extreme precipitation episodes affected many regions of central and southern Europe, culminating in one of the most severe flooding events ever experienced along sections of the river Elbe and its tributaries. In this paper, the synoptic meteorological situation during the primary flooding event, 11-13 August 2002, and its recent background is illustrated and discussed. Then, backward trajectory modelling of water vapour transport is employed to determine the sources and transport pathways of the moisture which rained out during the event. The Lagrangian trajectory model FLEXTRA is used together with high resolution operational meteorological analyses from the ECMWF to track a very large number of trajectories, initialized in a dense three-dimensional grid array over the extreme rainfall region. Specific humidity changes along each trajectory are mapped out to yield source-receptor relationships between evaporation and subsequent precipitation for the event. Regions of significant surface evaporation of moisture which later rained out were determined to be parts of the Aegean and Ligurian Seas during the initial stages of the event, while strong evaporation from eastern European land surfaces and from the Black Sea became dominant later on. The method also provides precipitation estimates based solely on specific humidity changes along Lagrangian airmass trajectories, which can be compared to ECMWF model forecast precipitation estimates

    Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2

    Get PDF
    International audienceThe Lagrangian particle dispersion model FLEXPART was originally (about 8 years ago) designed for calculating the long-range and mesoscale dispersion of air pollutants from point sources, such as after an accident in a nuclear power plant. In the meantime FLEXPART has evolved into a comprehensive tool for atmospheric transport modeling and analysis. Its application fields were extended from air pollution studies to other topics where atmospheric transport plays a role (e.g., exchange between the stratosphere and troposphere, or the global water cycle). It has evolved into a true community model that is now being used by at least 25 groups from 14 different countries and is seeing both operational and research applications. A user manual has been kept actual over the years and was distributed over an internet page along with the model's source code. In this note we provide a citeable technical description of FLEXPART's latest version (6.2)

    A model sensitivity study of the impact of clouds on satellite detection and retrieval of volcanic ash

    Get PDF
    Volcanic ash is commonly observed by infrared detectors on board Earth-orbiting satellites. In the presence of ice and/or liquid-water clouds, the detected volcanic ash signature may be altered. In this paper the sensitivity of detection and retrieval of volcanic ash to the presence of ice and liquid-water clouds was quantified by simulating synthetic equivalents to satellite infrared images with a 3-D radiative transfer model. The sensitivity study was made for the two recent eruptions of Eyjafjallajokull (2010) and Grimsvotn (2011) using realistic water and ice clouds and volcanic ash clouds. The water and ice clouds were taken from European Centre for Medium-RangeWeather Forecast (ECMWF) analysis data and the volcanic ash cloud fields from simulations by the Lagrangian particle dispersion model FLEXPART. The radiative transfer simulations were made both with and without ice and liquid-water clouds for the geometry and channels of the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The synthetic SEVIRI images were used as input to standard reverse absorption ash detection and retrieval methods. Ice and liquid-water clouds were on average found to reduce the number of detected ash-affected pixels by 6-12 %. However, the effect was highly variable and for individual scenes up to 40% of pixels with mass loading > 0 : 2 gm 2 could not be detected due to the presence of water and ice clouds. For coincident pixels, i. e. pixels where ash was both present in the FLEXPART (hereafter referred to as "Flexpart") simulation and detected by the algorithm, the presence of clouds overall increased the retrieved mean mass loading for the Eyjafjallajokull (2010) eruption by about 13 %,while for the Grimsvotn (2011) eruption ash-mass loadings the effect was a 4% decrease of the retrieved ash-mass loading. However, larger differences were seen between scenes (standard deviations of +/- 30 and +/- 20% for Eyjafjallajokull and Grimsvotn, respectively) and even larger ones within scenes. The impact of ice and liquid-water clouds on the detection and retrieval of volcanic ash, implies that to fully appreciate the location and amount of ash, hyperspectral and spectral band measurements by satellite instruments should be combined with ash dispersion modelling
    • …
    corecore